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Abstract

Purpose Questionable research or reporting practices
(QRPs) contribute to a growing concern regarding the
credibility of research in the organizational sciences and
related fields. Such practices include design, analytic, or
reporting practices that may introduce biased evidence,
which can have harmful implications for evidence-based
practice, theory development, and perceptions of the rigor
of science.

Design/Methodology/Approach To assess the extent to
which QRPs are actually a concern, we conducted a sys-
tematic review to consider the evidence on QRPs. Using a
tnangulation approach (e.g., by reviewing data from
observations, sensitivity analvses, and surveys), we iden-
tified the good, the bad, and the ugly.

Findings Of the 64 studies that fit our criteria, 6 appeared
to find little to no evidence of engagement in QRPs and the
other 58 found more severe evidence (91 %).
Implications Drawing upon the findings, we provide rec-
ommendations for future research related to publication
practices and academic training.

Originality/value We report findings from studies that
suggest that QRPs are not a problem. that QRPs are used at

a suboptimal rate, and that QRPs present a threat to the
viability of organizational science research.

Kevwords Questionable research practices QRPs -
Research methodology - Philosophy of science - Ethics -
Research methods

Introduction

Concerns exist regarding the credibility of research in the
soclal and natural sciences (Cortina 2015; Kepes and
McDaniel 2013; Nosek et al. 2015; Schmidt and Hunter
2015). These concerns are linked, in part, to the use of
questionable research or reporting practices (QRPs). QRPs
have been defined as “design, analytic, or reporting prac-
tices that have been questioned because of the potential for
the practice to be employved with the purpose of presenting
biased evidence in tfavor of an assertion™ (Banks et al.
2016, p. 3). Examples of commonly discussed QRPs
include selectively reporting hypotheses with a preference
for those that are statistically significant, “cherry picking”
fit indices in structural equation modeling (SEM), and
presenting post hoc hvpotheses as if they were developed a
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Questionable Research Practices (QRPs)
(John et al., 2012)

58%
In a paper, failing to Collecting more data
report all of a study's after seeing whether

dependent measures. results were significant.

Selective reporting P-hacking

50%

In a paper, selectively
reporting studies that
“worked”.

Selective reporting

43%

Deciding whether to exclude
data after looking at the impact
of doing so on the results.

P-hacking



Questionable Research Practices (QRPs)

= Avariety of problematic behaviors in research design, analysis,
interpretation, and reporting that produce favorable results but
undermine the credibility and rigor of scientific research (Banks et al.,
2016; Friese & Frankenbach, 2020).

= Common QRPs

* P-hacking or fishing for statistical significance
* HARKing: Hypothesizing after the results are known



Selective Reporting

= Selective reporting occurs if affirmative results within a study or the entire
study are preferentially reported and more likely to be included in meta-
analysis compared to non-affirmative results.

= Selective reporting can result in over-estimated average effect sizes, inflated
Type | error rates, and inappropriate inferences about intervention effects
(Carter et al., 2019)
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Existing Methods

* Regression-based adjustment methods for small-study effects

 PET-PEESE (Stanley & Doucouliagos, 2014)

* Weighted average of the adequately powered (WAAP, Stanley et al.,
2017)

* Weighted and iterated least squares (WILS, Stanley & Doucouliagos,
2022)

* Endogenous kink model (EK, Bom & Rachinger, 2019)

= Selection models
* p-value selection models (e.g., Hedges, 1992; Vevea & Hedges, 1995)

* p-curve (Simonsohn et al., 2014), p-uniform, p-uniform™ (van Aert et
al., 2023)



Univariate Regression-Based Methods
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Effect size estimate (SMD)
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* The data model
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1 if 0 <p; <.025
A if.025<p; <1

* The selection model (weight function)
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Univariate Selection Model (3PSM)

« The data model
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Problem Statement

Regression-based methods
Selection models
P-uniform, p-uniform*...
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Problem Statement

Dependent
Effect Sizes

Regression-based methods Multilevel methods
Selection models Multivariate methods
P-uniform, p-uniform™... Robust variance estimation
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Purpose of the Study

* To for the correlated and hierarchical
effects model in RVE framework to account for effect size dependencies

* To using the
proposed working model and weighting scheme.

* To of these adjustment methods, including
novel adaptations, in an extensive simulation study that emulates the
features of real-world meta-analyses assuming



CHE-ISCW and Novel Adaptations



CHE-ISCW

" |n univariate meta-analysis, fixed effects model weights were proposed to
be used in random effects meta-regression models to allocate relatively
more weights to large studies that are less susceptible to selective reporting
bias (Henmi & Copas, 2010).



CHE-ISCW

= The CHE model (correlated and hierarchical effects)

¢ T - U + u] + UU + eU uj~N(O,12) vij~N(O,a)2) Var(e;;) =Sl-2j Cov(ehj,eij) =,osj2
* The weight: 2 2
" The ISCW weights (inverse sampling covariance weights)
» S; = ps?Jj+ (1 — p)s?l; W;=S5;""
* The weight:

» Cluster-robust standard error



Novel Adaptations

. . CHE-ISCW . .

= =
A PET-PEESE 2 PET-PEESE
03 WAAP 03 WAAP

WILS WILS
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Simulation Study



Research Questions

= How do univariate adjustment methods perform in the
context of dependent effect sizes in the presence of one-step
or two-step selection?

" |[n the dependent effect size context and under one- or two-
step selection, how do the adapted estimators based on
CHE-ISCW perform compared to their univariate
counterparts?

" How do promising multivariate adapted adjustment methods
perform compared to the most effective univariate estimators?



Simulation Methods

= Data Generation
* Generated meta-analytic dataset with dependent effect sizes
* Censored under one-step and two-step p-value selection

 Estimators
o Univariate regression methods: RE-ISW, PET-PEESE, EK, WAAP, WILS
o Other univariate methods: trim and fill, p-uniform, p-uniform*, 3PSM, 4PSM

o Multivariate: CHE-ISCW, adapted PET-PEESE, adapted EK, adapted WAAP,
adapted WILS

* Performance criteria
- Bias
o Accuracy
- Confidence interval coverage and width



Results
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Highlights 2: CHE-ISCW improves bias, accuracy, and coverage
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Highlights 2: CHE-ISCW improves bias, accuracy, and coverage
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Average effect size: 0.2
Number of studies: 30
Average outcome corr: 0.4
One-step selection

Highlights 3: No Clear Winner!
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Discussion



Implications

= Meta-analysts should not ignore effect size dependencies when
correcting for selective reporting bias.

= Sensitivity analyses are recommended in practice because none of the
methods performs adequately across all simulation conditions.

= While methodological work is yet needed for further developing more
robust adjustment methods for selection bias, the most efficient strategy
for addressing selective reporting is to prevent its occurrence.
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Limitations and Future Directions

" The simulation is limited to one- and two-step p-value selection of
outcomes within study. Further research should consider other types of
selection mechanisms.

* The CHE-ISCW working model only includes the unexplained
heterogeneity. Future research could consider incorporating moderators
to explain the heterogeneity.

= This study only examined the recovery of average effect size parameter.
Research is needed to evaluate heterogeneity estimators in the
presence of selective reporting and effect size dependencies.



Thank you

Chen, M., & Pustejovsky, J. E. (2024, October 25). Adapting Methods for
Correcting Selective Reporting Bias in Meta-Analysis of Dependent Effect
Sizes. https://doi.org/10.31222/0sf.i0/jg52s
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Experimental Design

Simulation parameters Values

Overall average effect 0,0.2,0.5,0.8
Between-study heterogeneity 0,0.1,0.2,04

Number of studies 10, 30, 60, 100

Average correlation between outcomes 0.2,0.4, 0.8

Selection weight for .025 <p < .5 1, 0.8, 0.5, 0.25, 0.125, 0.05
Ratio of selection weights 1,0.5

Full factorial with 2,304 conditions, each condition
with 2000 replications
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Bias
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RMSE
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Coverage
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Bias
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RMSE
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